Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562728

RESUMO

How do social factors impact the brain and contribute to increased alcohol drinking? We found that social rank predicts alcohol drinking, where subordinates drink more than dominants. Furthermore, social isolation escalates alcohol drinking, particularly impacting subordinates who display a greater increase in alcohol drinking compared to dominants. Using cellular resolution calcium imaging, we show that the basolateral amygdala-medial prefrontal cortex (BLA-mPFC) circuit predicts alcohol drinking in a rank-dependent manner, unlike non-specific BLA activity. The BLA-mPFC circuit becomes hyperexcitable during social isolation, detecting social isolation states. Mimicking the observed increases in BLA-mPFC activity using optogenetics was sufficient to increase alcohol drinking, suggesting the BLA-mPFC circuit may be a neural substrate for the negative impact of social isolation. To test the hypothesis that the BLA-mPFC circuit conveys a signal induced by social isolation to motivate alcohol consumption, we first determined if this circuit detects social information. Leveraging optogenetics in combination with calcium imaging and computer vision pose tracking, we found that BLA-mPFC circuitry governs social behavior and neural representation of social contact. We further show that BLA-mPFC stimulation mimics social isolation-induced mPFC encoding of sucrose and alcohol, and inhibition of the BLA-mPFC circuit decreases alcohol drinking following social isolation. Collectively, these data suggest the amygdala-cortical circuit mirrors a neural encoding state similar to social isolation and underlies social isolation-associated alcohol drinking.

2.
Plant Phenomics ; 6: 0175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629082

RESUMO

Image segmentation is commonly used to estimate the location and shape of plants and their external structures. Segmentation masks are then used to localize landmarks of interest and compute other geometric features that correspond to the plant's phenotype. Despite its prevalence, segmentation-based approaches are laborious (requiring extensive annotation to train) and error-prone (derived geometric features are sensitive to instance mask integrity). Here, we present a segmentation-free approach that leverages deep learning-based landmark detection and grouping, also known as pose estimation. We use a tool originally developed for animal motion capture called SLEAP (Social LEAP Estimates Animal Poses) to automate the detection of distinct morphological landmarks on plant roots. Using a gel cylinder imaging system across multiple species, we show that our approach can reliably and efficiently recover root system topology at high accuracy, few annotated samples, and faster speed than segmentation-based approaches. In order to make use of this landmark-based representation for root phenotyping, we developed a Python library (sleap-roots) for trait extraction directly comparable to existing segmentation-based analysis software. We show that pose-derived root traits are highly accurate and can be used for common downstream tasks including genotype classification and unsupervised trait mapping. Altogether, this work establishes the validity and advantages of pose estimation-based plant phenotyping. To facilitate adoption of this easy-to-use tool and to encourage further development, we make sleap-roots, all training data, models, and trait extraction code available at: https://github.com/talmolab/sleap-roots and https://osf.io/k7j9g/.

3.
bioRxiv ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38045278

RESUMO

Image segmentation is commonly used to estimate the location and shape of plants and their external structures. Segmentation masks are then used to localize landmarks of interest and compute other geometric features that correspond to the plant's phenotype. Despite its prevalence, segmentation-based approaches are laborious (requiring extensive annotation to train), and error-prone (derived geometric features are sensitive to instance mask integrity). Here we present a segmentation-free approach which leverages deep learning-based landmark detection and grouping, also known as pose estimation. We use a tool originally developed for animal motion capture called SLEAP (Social LEAP Estimates Animal Poses) to automate the detection of distinct morphological landmarks on plant roots. Using a gel cylinder imaging system across multiple species, we show that our approach can reliably and efficiently recover root system topology at high accuracy, few annotated samples, and faster speed than segmentation-based approaches. In order to make use of this landmark-based representation for root phenotyping, we developed a Python library (sleap-roots) for trait extraction directly comparable to existing segmentation-based analysis software. We show that landmark-derived root traits are highly accurate and can be used for common downstream tasks including genotype classification and unsupervised trait mapping. Altogether, this work establishes the validity and advantages of pose estimation-based plant phenotyping. To facilitate adoption of this easy-to-use tool and to encourage further development, we make sleap-roots, all training data, models, and trait extraction code available at: https://github.com/talmolab/sleap-roots and https://osf.io/k7j9g/.

4.
Elife ; 122023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36951911

RESUMO

Recently developed methods for video analysis, especially models for pose estimation and behavior classification, are transforming behavioral quantification to be more precise, scalable, and reproducible in fields such as neuroscience and ethology. These tools overcome long-standing limitations of manual scoring of video frames and traditional 'center of mass' tracking algorithms to enable video analysis at scale. The expansion of open-source tools for video acquisition and analysis has led to new experimental approaches to understand behavior. Here, we review currently available open-source tools for video analysis and discuss how to set up these methods for labs new to video recording. We also discuss best practices for developing and using video analysis methods, including community-wide standards and critical needs for the open sharing of datasets and code, more widespread comparisons of video analysis methods, and better documentation for these methods especially for new users. We encourage broader adoption and continued development of these tools, which have tremendous potential for accelerating scientific progress in understanding the brain and behavior.


Assuntos
Algoritmos , Software , Animais , Comportamento Animal , Etologia , Gravação em Vídeo
6.
Nat Methods ; 19(4): 486-495, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379947

RESUMO

The desire to understand how the brain generates and patterns behavior has driven rapid methodological innovation in tools to quantify natural animal behavior. While advances in deep learning and computer vision have enabled markerless pose estimation in individual animals, extending these to multiple animals presents unique challenges for studies of social behaviors or animals in their natural environments. Here we present Social LEAP Estimates Animal Poses (SLEAP), a machine learning system for multi-animal pose tracking. This system enables versatile workflows for data labeling, model training and inference on previously unseen data. SLEAP features an accessible graphical user interface, a standardized data model, a reproducible configuration system, over 30 model architectures, two approaches to part grouping and two approaches to identity tracking. We applied SLEAP to seven datasets across flies, bees, mice and gerbils to systematically evaluate each approach and architecture, and we compare it with other existing approaches. SLEAP achieves greater accuracy and speeds of more than 800 frames per second, with latencies of less than 3.5 ms at full 1,024 × 1,024 image resolution. This makes SLEAP usable for real-time applications, which we demonstrate by controlling the behavior of one animal on the basis of the tracking and detection of social interactions with another animal.


Assuntos
Aprendizado Profundo , Algoritmos , Animais , Comportamento Animal , Cabeça , Aprendizado de Máquina , Camundongos , Comportamento Social
7.
Plant Methods ; 18(1): 21, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35184723

RESUMO

BACKGROUND: In recent years, there has been an increase of interest in plant behaviour as represented by growth-driven responses. These are generally classified into nastic (internally driven) and tropic (environmentally driven) movements. Nastic movements include circumnutations, a circular movement of plant organs commonly associated with search and exploration, while tropisms refer to the directed growth of plant organs toward or away from environmental stimuli, such as light and gravity. Tracking these movements is therefore fundamental for the study of plant behaviour. Convolutional neural networks, as used for human and animal pose estimation, offer an interesting avenue for plant tracking. Here we adopted the Social LEAP Estimates Animal Poses (SLEAP) framework for plant tracking. We evaluated it on time-lapse videos of cases spanning a variety of parameters, such as: (i) organ types and imaging angles (e.g., top-view crown leaves vs. side-view shoots and roots), (ii) lighting conditions (full spectrum vs. IR), (iii) plant morphologies and scales (100 µm-scale Arabidopsis seedlings vs. cm-scale sunflowers and beans), and (iv) movement types (circumnutations, tropisms and twining). RESULTS: Overall, we found SLEAP to be accurate in tracking side views of shoots and roots, requiring only a low number of user-labelled frames for training. Top views of plant crowns made up of multiple leaves were found to be more challenging, due to the changing 2D morphology of leaves, and the occlusions of overlapping leaves. This required a larger number of labelled frames, and the choice of labelling "skeleton" had great impact on prediction accuracy, i.e., a more complex skeleton with fewer individuals (tracking individual plants) provided better results than a simpler skeleton with more individuals (tracking individual leaves). CONCLUSIONS: In all, these results suggest SLEAP is a robust and versatile tool for high-throughput automated tracking of plants, presenting a new avenue for research focusing on plant dynamics.

8.
Nat Neurosci ; 23(12): 1537-1549, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33169033

RESUMO

Over the past years, numerous methods have emerged to automate the quantification of animal behavior at a resolution not previously imaginable. This has opened up a new field of computational ethology and will, in the near future, make it possible to quantify in near completeness what an animal is doing as it navigates its environment. The importance of improving the techniques with which we characterize behavior is reflected in the emerging recognition that understanding behavior is an essential (or even prerequisite) step to pursuing neuroscience questions. The use of these methods, however, is not limited to studying behavior in the wild or in strictly ethological settings. Modern tools for behavioral quantification can be applied to the full gamut of approaches that have historically been used to link brain to behavior, from psychophysics to cognitive tasks, augmenting those measurements with rich descriptions of how animals navigate those tasks. Here we review recent technical advances in quantifying behavior, particularly in methods for tracking animal motion and characterizing the structure of those dynamics. We discuss open challenges that remain for behavioral quantification and highlight promising future directions, with a strong emphasis on emerging approaches in deep learning, the core technology that has enabled the markedly rapid pace of progress of this field. We then discuss how quantitative descriptions of behavior can be leveraged to connect brain activity with animal movements, with the ultimate goal of resolving the relationship between neural circuits, cognitive processes and behavior.


Assuntos
Comportamento Animal/fisiologia , Comportamento/fisiologia , Encéfalo/fisiologia , Animais , Humanos , Neurociências
9.
Elife ; 92020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32758355

RESUMO

Objective and automatic measurement of pain in mice remains a barrier for discovery in neuroscience. Here, we capture paw kinematics during pain behavior in mice with high-speed videography and automated paw tracking with machine and deep learning approaches. Our statistical software platform, PAWS (Pain Assessment at Withdrawal Speeds), uses a univariate projection of paw position over time to automatically quantify seven behavioral features that are combined into a single, univariate pain score. Automated paw tracking combined with PAWS reveals a behaviorally divergent mouse strain that displays hypersensitivity to mechanical stimuli. To demonstrate the efficacy of PAWS for detecting spinally versus centrally mediated behavioral responses, we chemogenetically activated nociceptive neurons in the amygdala, which further separated the pain-related behavioral features and the resulting pain score. Taken together, this automated pain quantification approach will increase objectivity in collecting rigorous behavioral data, and it is compatible with other neural circuit dissection tools for determining the mouse pain state.


Assuntos
Automação Laboratorial/instrumentação , Medição da Dor/métodos , Animais , Feminino , Masculino , Camundongos , Fatores de Tempo
10.
Annu Rev Neurosci ; 43: 441-464, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32283996

RESUMO

As acquiring bigger data becomes easier in experimental brain science, computational and statistical brain science must achieve similar advances to fully capitalize on these data. Tackling these problems will benefit from a more explicit and concerted effort to work together. Specifically, brain science can be further democratized by harnessing the power of community-driven tools, which both are built by and benefit from many different people with different backgrounds and expertise. This perspective can be applied across modalities and scales and enables collaborations across previously siloed communities.


Assuntos
Big Data , Encéfalo/fisiologia , Biologia Computacional , Rede Nervosa/fisiologia , Animais , Biologia Computacional/métodos , Bases de Dados Genéticas , Expressão Gênica/fisiologia , Humanos
11.
Nat Methods ; 16(1): 117-125, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30573820

RESUMO

The need for automated and efficient systems for tracking full animal pose has increased with the complexity of behavioral data and analyses. Here we introduce LEAP (LEAP estimates animal pose), a deep-learning-based method for predicting the positions of animal body parts. This framework consists of a graphical interface for labeling of body parts and training the network. LEAP offers fast prediction on new data, and training with as few as 100 frames results in 95% of peak performance. We validated LEAP using videos of freely behaving fruit flies and tracked 32 distinct points to describe the pose of the head, body, wings and legs, with an error rate of <3% of body length. We recapitulated reported findings on insect gait dynamics and demonstrated LEAP's applicability for unsupervised behavioral classification. Finally, we extended the method to more challenging imaging situations and videos of freely moving mice.


Assuntos
Comportamento Animal , Aprendizado Profundo , Drosophila melanogaster/fisiologia , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Animais , Automação , Gráficos por Computador , Marcha , Locomoção , Masculino , Camundongos , Interface Usuário-Computador
12.
Elife ; 72018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30226467

RESUMO

Cognitive and social capacities require postnatal experience, yet the pathways by which experience guides development are unknown. Here we show that the normal development of motor and nonmotor capacities requires cerebellar activity. Using chemogenetic perturbation of molecular layer interneurons to attenuate cerebellar output in mice, we found that activity of posterior regions in juvenile life modulates adult expression of eyeblink conditioning (paravermal lobule VI, crus I), reversal learning (lobule VI), persistive behavior and novelty-seeking (lobule VII), and social preference (crus I/II). Perturbation in adult life altered only a subset of phenotypes. Both adult and juvenile disruption left gait metrics largely unaffected. Contributions to phenotypes increased with the amount of lobule inactivated. Using an anterograde transsynaptic tracer, we found that posterior cerebellum made strong connections with prelimbic, orbitofrontal, and anterior cingulate cortex. These findings provide anatomical substrates for the clinical observation that cerebellar injury increases the risk of autism.


Assuntos
Transtorno Autístico/fisiopatologia , Comportamento Animal/fisiologia , Cerebelo/fisiologia , Cognição/fisiologia , Animais , Mapeamento Encefálico , Cerebelo/diagnóstico por imagem , Modelos Animais de Doenças , Humanos , Processamento de Imagem Assistida por Computador , Interneurônios/fisiologia , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética , Camundongos , Vias Neurais/fisiologia , Mudança Social
13.
Curr Biol ; 28(15): 2400-2412.e6, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30057309

RESUMO

Deciphering how brains generate behavior depends critically on an accurate description of behavior. If distinct behaviors are lumped together, separate modes of brain activity can be wrongly attributed to the same behavior. Alternatively, if a single behavior is split into two, the same neural activity can appear to produce different behaviors. Here, we address this issue in the context of acoustic communication in Drosophila. During courtship, males vibrate their wings to generate time-varying songs, and females evaluate songs to inform mating decisions. For 50 years, Drosophila melanogaster song was thought to consist of only two modes, sine and pulse, but using unsupervised classification methods on large datasets of song recordings, we now establish the existence of at least three song modes: two distinct pulse types, along with a single sine mode. We show how this seemingly subtle distinction affects our interpretation of the mechanisms underlying song production and perception. Specifically, we show that visual feedback influences the probability of producing each song mode and that male song mode choice affects female responses and contributes to modulating his song amplitude with distance. At the neural level, we demonstrate how the activity of four separate neuron types within the fly's song pathway differentially affects the probability of producing each song mode. Our results highlight the importance of carefully segmenting behavior to map the underlying sensory, neural, and genetic mechanisms.


Assuntos
Comunicação Animal , Drosophila melanogaster/fisiologia , Neurônios Motores/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Corte
14.
Neuron ; 95(5): 986-988, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28858625

RESUMO

In this issue of Neuron, Watanabe et al. (2017) uncover how octopamine, an invertebrate norepinephrine analog, modulates the neural pathways that bias Drosophila males toward aggression.


Assuntos
Drosophila , Octopamina , Agressão , Animais , Proteínas de Drosophila , Masculino , Neurônios
15.
Nat Neurosci ; 20(5): 727-734, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28319608

RESUMO

Cerebellar granule cells, which constitute half the brain's neurons, supply Purkinje cells with contextual information necessary for motor learning, but how they encode this information is unknown. Here we show, using two-photon microscopy to track neural activity over multiple days of cerebellum-dependent eyeblink conditioning in mice, that granule cell populations acquire a dense representation of the anticipatory eyelid movement. Initially, granule cells responded to neutral visual and somatosensory stimuli as well as periorbital airpuffs used for training. As learning progressed, two-thirds of monitored granule cells acquired a conditional response whose timing matched or preceded the learned eyelid movements. Granule cell activity covaried trial by trial to form a redundant code. Many granule cells were also active during movements of nearby body structures. Thus, a predictive signal about the upcoming movement is widely available at the input stage of the cerebellar cortex, as required by forward models of cerebellar control.


Assuntos
Cerebelo/fisiologia , Retroalimentação , Aprendizagem/fisiologia , Neurônios/fisiologia , Animais , Antecipação Psicológica/fisiologia , Condicionamento Clássico/fisiologia , Masculino , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...